NAU SOUTH CAMPUS TRAFFIC STUDY

Transportation & Systems Engineering

Mshary Alkhamees Faris Alradhi Louis Sisto Michael Talamantez

PROJECT LOCATION [12]

Location:
➢ Flagstaff, AZ
➢ NAU South Campus

Purpose:

Provide technical recommendations to mitigate traffic.

Area of Interest:

- McConnel Drive
- Pine Knoll Drive
- Huffer Lane
- Parking Lots (P62, P61, P47, P46)

POTENTIAL CHALLENGES

TOPOGRAPHY:

- Slope & Curvature Of The Existing Roadway
- TIME OF CONGESTION:
- Occurs 20-25 Minute Intervals
- MCCONNELL EXIT RAMP (341):
- Located 280ft West Of The Area Of Interest AREAS OF JURISDICTION:
- > Arizona Department Of Transportation
- City Of Flagstaff
- Northern Arizona University

TRAFFIC CONGESTION AT PROJECT LOCATIONS [1] Louis, 2

STAKEHOLDERS

<u>Client</u>

Greg Mace, Engineering & Inspection Associate Director of Northern Arizona University

Public

- City of Flagstaff Residents
- Establishments Along Vicinity
- > NAU Students & Faculty
- Traffic Users Exiting Freeway
- > Arizona Department of Transportation (ADOT)

VIEW OF NAU CAMPUS [11]

DR. GREG MACE [2]

Task 1: Field Evaluation

- > Analysis of Existing Data
- > Analysis of Existing Traffic Conditions
- > 2015 NAU Landscape Master Plan
- > NAU Circulation Study
- Signage

Task 2: Mapping & Surveying

- 2.1 Establish Survey Control
- 2.2 Create Topographical Map

PINE KNOLL DRIVE & HUFFER LANE INTERSECTION [1]

Louis, 4

Task 3: Site Characterization

- 3.1 Traffic Impact Analysis
 - 3.1.1 Occupancy Data
 - 3.1.2 Volume Analysis
 - 3.1.3 Vehicle Classification Study
 - 3.1.4 Delay Analysis

HEAVY CONGESTION ON PINE KNOLL DRIVE [1]

INTERSECTION OF HUFFER LANE & PINE KNOLL DRIVE [1]

Task 4: Design

Design Considerations

- ➢ Roundabout
- ➢ Roadway Extension
- ➢ Pedway with Bike Lane
- Pedestrian Footbridge

ARIZONA STATE UNIVERSITY PEDESTRIAN BRIDGE [11]

Task 4: Design

4.2 Economical

- Design Cost
- > CMF Crash Modification Factors
- > KABCO Crash Severity Index
- > Empirical Bayes Method of Analysis
- 4.3 Environmental
- Synchro To Estimate Reduction In Vehicular Delay
 4.4 Social
 - Public Perception Of Design

LIST OF EXCLUSIONS

Geotechnical Engineering

Construction Design Specifications

Structural Design Specifications

>Hydrologic or Hydraulic Analysis

Faris, 8

TABLE 1. PERSONNEL HOURS PUT INTO PROJECT.

Hours											
Task	Senior Engineer	Project Engineer	Engineer in Training	Intern	Total Hours						
Task 1: Field Evaluation											
1.1 Analysis of Existing Data	10	20	35	35	100						
Task 2: Mapping and Surveys											
2.1 Establish Survey Control	2	8	8	8							
2.2 Topographic Surveys	2	8	32	32	100						
Task 3: Site Characterization											
3.1 Traffic Impact Analysis	Total Sum:	28	66	131							
3.1.1 Occupancy Data	3	8	25	35							
3.1.2 Volume Analysis	3	8	16	35							
3.1.3 Delay Analysis	2	8	15	35							
3.1.4 Vehicle Classification Study	1	4	10	26	234						
Task 4: Design											
4.1 Geometric Study	3	5	20	20							
4.2 Environmental	2	8	15	16							
4.3 Social	2	6	15	16							
4.4 Economical	2	8	20	8	166						
				Total	600						

Mshary, 10

COST OF ENGINEERING SERVICES

Positions		5	Qualifications				
Senior Engineer			Transportation Specialty				
Project Engineer			Traffic & Systems Specialty				
Engineer In Training ((E.I.T)	Traffic Systems Specialty				
Intern		Traffic	Traffic Data Collector Specialty				
			Base Pay	Benefits of	Actual	Billing	
			Rate	Base Pay	Pay	Rate	
Personnel	Classification	Hours	(\$/Hour)	Rate (\$)	(\$/Hour)	(\$/Hour)	Cost
I ersonner	Classification	HOUID	(\$711041)	Hate (ϕ)	(+/==0		
I CISOIMCI	Senior Engineer	32	\$120.00	50%	\$185.00	\$220.00	\$ 7,040.00
1 cr sonner	Senior Engineer Project Engineer	32 91	\$120.00 \$100.00	50% 20.00%	\$185.00 \$133.00	\$220.00 \$160.00	\$ 7,040.00 \$14,560.00
1 cr sonner	Senior Engineer Project Engineer Engineer In Training (E.I.T)	32 91 211	\$120.00 \$100.00 \$50.00	50% 20.00% 25.00%	\$185.00 \$133.00 \$95.00	\$220.00 \$160.00 \$140.00	\$ 7,040.00 \$14,560.00 \$29,540.00
	Senior Engineer Project Engineer Engineer In Training (E.I.T) Intern	32 91 211 266	\$120.00 \$100.00 \$50.00 \$25.00	50% 20.00% 25.00% 30.00%	\$185.00 \$133.00 \$ 95.00 \$ 83.00	\$220.00 \$160.00 \$140.00 \$110.00	\$ 7,040.00 \$14,560.00 \$29,540.00 \$29,260.00
Rental	Senior Engineer Project Engineer Engineer In Training (E.I.T) Intern Survey Equipment	32 91 211 266 100	\$120.00 \$100.00 \$50.00 \$25.00	50% 20.00% 25.00% 30.00%	\$185.00 \$133.00 \$95.00 \$83.00	\$220.00 \$160.00 \$140.00 \$110.00 \$ 5.00	\$7,040.00 \$14,560.00 \$29,540.00 \$29,260.00 \$500.00

Michael, 11

R E F E R E N C E S

[1] L. Sisto, NAU Traffic Study. 2017.

[2] Northern Arizona University, CIVIL AND ENVIRONMENTAL ENGINEERING. 2017.

[3] United States Department of Transportation - Federal Highway Administration, "Chapter 4C - MUTCD 2009 Edition - FHWA", Mutcd.fhwa.dot.gov, 2017. [Online]. Available: http://mutcd.fhwa.dot.gov/htm/2009/part4/part4c.htm. [Accessed: 30- Jan- 2017].

[4] "FHWA - MUTCD - 2003 Edition Revision 1 Chapter 4C". Mutcd.fhwa.dot.gov. N.p., 2017. Web. 29 Jan. 2017.

[5] "Comparison of Turning Movement Count Data Collection Methods for a Signal Optimization Study," in Mio Vision, 2011. [Online]. Available: http://miovision.com/wp-content/uploads/URS_Whitepaper_May2011.pdf.

[6] M. Kyte and T. Urbanik, Traffic signal systems operations and design: An activity-based learning approach, First Edition ed. 2012.

[7] Manual on Uniform Traffic Studies, "Intersection Turning Movement Counts", http://mutcd.fhwa.dot.gov/, 2014. [Online]. Available: http://mutcd.fhwa.dot.gov/htm/2009r1r2/part4/part4_toc.htm. [Accessed: 31- Jan- 2017].

[8] U.S. Department of Transportation Federal Highway Administration, "Part 4 Highway Traffic Signals", 2009. [Online]. Available: http://mutcd.fhwa.dot.gov/pdfs/2009r1r2/part4.pdf. [Accessed: 01- Feb- 2017].

[9] M. Mamlouk, Ph.D., P.E., "Effect of Traffic Roundabouts on Safety in Arizona", National Transportation Center at Maryland (NTC@Maryland), Maryland, 2016.

[10] Federal Highway Administration Office of Safety, "Intersection Safety Roundabouts - Safety | Federal Highway Administration", Safety.fhwa.dot.gov, 2017. [Online]. Available: http://safety.fhwa.dot.gov/intersection/innovative/roundabouts/fhwasa10006/. [Accessed: 01- Feb- 2017].

[11] Google Images, Aerial view of Northern Arizona University campus. 2017.

[12] 2017 Autodesk Inc., Civil 3D 2017 Imperial. 2017.